

SXT and FMA Status

R. Petre/GSFC SXT Mirror IPT Lead Robert.Petre-1@nasa.gov

Outline

- SXT status R. Petre
 - Requirements update
 - Reference design
 - Technology roadmap
 - Recent accomplishments
 - Plans for coming year
 - FMA industry study
- Reflector development W. Zhang
- SXT Metrology D. Content
- OAP "dry run" at MSFC W. Jones

Constellation-X Mission Requirements Flow Down

Science Goals

Effects of Strong Gravity near Supermassive Black Holes

Nature of Dark Matter and Dark Energy

Formation of Supermassive Black Holes

Lifecycles of Energy

Measurement Capabilities

Effective area:

15,000 cm² at 1.25 keV 6,000 cm² at 6.0 keV 1,000 cm² (0.25 to 10 keV) 1.500 cm² at 40 keV

Band pass:

0.25 to 40 keV

Spectral resolving power (E/DE):

≥ 300 from 0.25 to 6.0 keV ≥ 3000 at 6 keV ≥ 10 at 40 keV

System angular resolution and FOV:

15 arc sec HPD and FOV > 5 arcmin dia (0.25 to 10 keV)

1 arc min HPD and FOV > 8 arcmin dia (10 to 40 keV)

Engineering Implications

Effective area:

- Light weight, highly nested, large diameter (~1.6 m) mirror
- Long focal length (~10 m)

Band pass:

2 types of telescopes to cover energy range

Spectral resolving power:

- Dispersive and non-
- dispersive capability to cover energy band

System angular resolution and FOV:

- Tight tolerances on telescope figure, surface finish, alignment
- ≥ 30 x 30 array for x-ray calorimeter (pixels ~5 arcsec)
- Cryocooler driven by array size and readout electronics

Key Technologies

High throughput optics:

- High performance replicated segmented reflectors
- High reflectance coatings
- High strength, low mass materials for optical surfaces

High energy band:

- Multilayer optics
- CdZnTe detectors

High spectral resolution:

- 2 eV calorimeter arrays
- Coolers
- Lightweight gratings
- CCD arrays extending to 0.25 keV

Optical bench:

- Stable (time and temp.)
- High strength/low weight materials

Mission Performance Requirements

- Mission science performance requirements:
 - Mission level effective areas from 0.25 to 10 keV
 - Based on instantaneous observing requirements for time dependent phenomena
 - Angular resolution
 - Direct requirement based on confusion limit
 - RGA requirement for spectral resolving power has an implicit requirement on SXT mirror
 - These coincidentally result in 12.5 arcsec each for FMA
 - Mission level field of view (FOV)
 - Limited in practice by the detectors, not the optics
 - But places limits on FMA optical path internal alignments
 - Stray light
 - Based on low flux source sensitivity and detector background considerations

SXT Performance Requirements and Goals

Effective area

- Increased to offset reduce grating efficiency prediction and blockage of mirror structures
- 9630 cm² at 0.25 keV
- 7250 cm² at 1.25 keV
- 1730 cm² at 6 keV
- 380 cm² at 10 keV
- Goal is to maximize margin over requirement

On-axis angular resolution on-orbit (unchanged)

- Requirement: 12.5 arcsec Half Power Diameter (HPD)
- Goal: 4 arcsec HPD
- Need more complete specification 70 % and/or 90 % encircled energy diameter

Field of view

- Was specified as 2.5 arc minute diameter
- Increased to accommodate square calorimeter array
- Effective area at 2.5 arc minutes off axis is >95 percent of on-axis effective area (at 1.25 keV)

Stray light rejection (new)

Photon flux from source outside field of view is =10⁻³ of on-axis flux

SXT Flight Mirror Assembly (FMA) Reference Concept

FMA Reference Concept Mirror Incorporates Modular Approach

1.6 m Diameter at P-S Intersection

FMA Reference Concept Mirror Design Parameters

Parameter	Description		
Design	Segmented Wolter I		
Reflector substrate material	Thermally formed glass		
Reflecting surface fabrication	Epoxy replication		
X-ray reflecting surface	Gold		
Number of nested shells	127 (inner); 89 (outer)		
Total number of reflectors	3660		
Reflector length	20 cm		
Number of modules	6 (inner); 12 (outer)		
Module housing composition	Titanium alloy, CTE-matched to substrate		
Largest reflector surface area	0.08 m ²		
Reflector substrate density	2.4 gm/cm ³		
Reflector thickness	0.41 mm		
Reflector microroughness	0.4 nm RMS		
FMA mechanical envelope	1.68 m dia x 1.98 m		

Segmented X-ray Mirror Development Process

	Optical Assembly Pathfinder			Mass Production	Prototype	
	OAP #1	OAP #2	Engineering Unit	Pathfinder	Pathfinder	Prototype
Configuration	P S	P S	S	PS	P	Industry Development
Module Type	Inner	Inner	Inner	Inner	Outer	Sector (2 Outer & 1 Inner)
Housing Material	Aluminum	Titanium	Titanium/composite	Titanium/composite	Titanium/composite	Titanium/composite
Focal Length	8.4 m	8.4 m	8.4 m	8.4 m	10.0 m	10.0 m
Reflector Length (P&S)	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20-30 cm	2 x 20-30 cm
Nominal Reflector Diameter(s)	50 cm	50 cm	50 cm±	50 cm±	160 cm± 120 cm± 100 cm	160 cm± 120 cm± 100 cm± 80cm±, 30 cm±
Goals	Align 1 reflector pair (P&H) Evaluate mirror assembly design, alignment and metrology	 Align 1 reflector pair Evaluate reflector Evaluate mirror bonding X-ray test 	Requirements: Align one reflector pair to achieve <12.5 arcsec X-ray test, vibration test (Q4 of FY04) Goals (Q2 of FY05): Replicate 3 mirror pairs using a single replication mandrel Align up to 3 reflector pairs to achieve <12.5 arcsec Environmental test	 Align 3 reflector pairs Evaluate tooling and alignment techniques for mass production X-ray test 	Flight-like configuration outer module Environmental and X-ray test Largest reflectors	Demonstrate largest and smallest diameter reflectors Demonstrate module to module alignment Environmental and X-ray test
TRL	TRL 3		TRL 4		TRL 5/6	TRL 6
Timeframe	Q2 of FY03	Q3 of FY04	Q2 of FY05	Q4 of FY05	Q2 of FY07	Q3 of FY07
Technology Gate						

November 19, 2003

FST -9

SXT Mirror Phased Technology Development

OAP 1

Inner Module (P&S)
Objective: Evaluate mirror
assy design, alignment and
metrology

OAP 2

Inner Module (P&S)
Objective: Evaluate
reflector, mirror bonding

Engineering Unit (EU)

Inner Module (P&S)
Objective: Evaluate assembly
gravity sag, titanium housing, Xray and environmental test

Mass Alignment Pathfinder

Inner Module (P&S)
Objective: Evaluate tooling
and alignment techniques for
mass production, X-ray test

Prototype Outer Pathfinder

Outer modules (P&S) Largest Reflectors Objective: Evaluate flight-like configuration outer module, X-ray and environmental test

Prototype Unit

Two outer modules + one Inner module (P&S) Objective: Evaluate flight-like subassembly, X-ray and environmental test

Flight Mirror Assembly (FMA)

SXT Technology Development — Status

- Development has centered on 50 cm diameter engineering testbeds with 8.4 m focal length
 - Utilizes available metal mandrels and preparation facilities (coating & cleaning)
- Substantial progress toward making 50 cm diameter reflector segments that meet requirements (Will Zhang presentation)
 - Reflector fabrication is key issue to meeting angular resolution requirement
 - Fabrication of acceptable reflectors requires accurately figured forming mandrels
 - Reflector quality is now limited by forming mandrel quality
 - Forming and replication require dust-free environment
 - Modified epoxy application approach applied as axial strips; reduction of thickness
 - Knowledge of reflector quality is currently limited by ability to mount reflectors for metrology
 - Low stress mounts are yielding reproducable measurements
 - Still lack ability to map free standing reflector in three dimensions
- Forming mandrel requirements (figure, material) evolving along with reflector production process; 50 cm mandrels being modified to meet new requirements
- Replication mandrels fabricated by Zeiss meet figure requirements (not goal)
- OAP1 work demonstrated ability to reproducibly manipulate and align reflectors
- OAP2 used to develop reflector bonding scheme
- OAP2 "dry run" carried out to prepare for X-ray performance tests in MSFC Stray Light Facility (Bill Jones presentation)
- Status summarized in 2003 SPIE papers

Precision forming and replication mandrels

- Con-X has taken delivery from Zeiss of three precision (~4")
 Zerodur replication mandrels for 30-degree arcs of 1.6 m 1.2m, and 1.0 m diameter mirrors.
- Schott is producing a precision Keatite (Zerodur K20) forming mandrel for the 1.6 m secondary. A fused Si forming mandrel for the primary will be figured to higher accuracy by Zeiss.
- Figure of all forming mandrels must be made more accurate than previously thought.
- Forming mandrel material under study. Fused Si is acceptable; SXT will determine acceptability of Zerodur K20.
- Cylindrical, fused Si 50 cm forming mandrels are being accurately figured (to 2-4") by GSFC optics branch (completion by January 2004). Precision 50 cm "slab" forming mandrels will be procured.

Alignment Housings

- Work up until now has concentrated on individual thin glass reflector behavior under the constraints of the Optical Alignment Pathfinder (OAP1 and OAP2) systems
- OAP1 designed to hold a reflector and adjust it at multiple points along the top and bottom of the reflector
- OAP2 designed to provide a low stress housing that can hold a reflector bonded in place. It can be used in vertical or horizontal orientation without imparting significant deformation on the reflector
- Each allow the use of CDA and front surface axial interferometry
- Future generation housings will incorporate characteristics that allow for mass alignment

OAP1

OAP2

November 19, 2003

Technology Goals for Coming Year

- Continue improving 50 cm diameter reflector figure key to success
 - Refinement of forming more uniform temperature
 - Obtain forming mandrels with 2 4 arcsec figure
 - Reduce epoxy thickness
 - Develop means of 3D mapping of free standing reflector
- X-ray and environmental tests of reflector pair (in OAP2 housing)
- Design and start construction of Engineering Unit
 - Current design details carried in reference mechanical design
- Develop automated alignment scheme
 - Incorporate CDA measurements into computer-controlled feedback loop for reflector alignment
- Upgrade facility for producing 1.6 m diameter reflectors
 - Replication and coating chambers have been ordered
- Support Flight Mirror Array industry study
 - Produce requirements and reference documents, and statement of work
 - Support selection process
 - Interact with selected contractors

FMA Overall Acquisition

- SXT FMA is longest lead item for Constellation-X mission
- Phase A FMA study contracts starting Q3 FY04
 - FMA System Study (Multiple Awards ~ 6/04)
 - Reflector Production Study (Multiple Awards ~11/04)
- FMA contract award Q4 FY05 will include
 - Final prototype technology demonstration
 - Technology transfer
 - Four FMA's
 - Reflector production included
 - Mandrels may be GFE or included
 - Grating modules or assembly will be GFE (competed under Announcement of Opportunity)
- FMA deliveries to Observatory Q2 FY12 Q3 FY13
 - FMA qualified and calibrated upon delivery

Objectives of FMA System Study Contract

- Begin FMA technology and systems knowledge transfer to potential industry FMA providers
- Develop an FMA design
- Provide input to and feed back on specifications at various levels
 - Technology development program specifications
 - Preliminary production specifications for Reflector Production Study contract
 - Reflection Grating Spectrometer interfaces
 - Observatory level specifications
- Develop strategies for FMA technology transfer
- Identify final stage(s) of FMA prototype
- Provide input in preparation for FMA flight procurement
 - Requirements and Interface definition
 - Cost and schedule ROM's